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Thermodynamic properties of a one-dimensional system of charged bosons
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A large but finite one-dimensional neutral system containing two types of locally (and weakly) in-
teracting “‘charged” bosons is examined for its thermodynamic behavior at finite temperatures. It is
found that the system can have a length L, at which it will achieve thermodynamic stability provided
the temperature is below a finite temperature T,;. If the temperature T, is exceeded, the system disasso-
ciates in the sense that it no longer has a stable size. T} is a function of the interaction strengths between
the bosons as well as the number of bosons N present in the system. Although the system has an a priori
dependence on a set of five parameters, when N and L are large scaling is present. Interestingly, if one of
the interaction parameters is zero, making the interactions “Coulomb-like,” the system will collapse if
periodic boundary conditions are used. The introduction of Dirichlet boundary conditions does not
prevent this collapse for large N and L but will do so otherwise. Moreover, without the collapse, the
effect of N on the stability length is strikingly different from the nonzero parameter case, where periodic
boundary conditions are used. This effect has been noted before in the ground-state energy, but now it is
shown that the effect persists for finite temperatures.
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I. INTRODUCTION

In this paper we are going to examine some of the ther-
modynamic properties of a one-dimensional system of
“charged” bosons obeying the Hamiltonian
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and — o <Xx; <. In the context of N identical bosons
and with ¢ =0 the solution for the ground-state energy
has been known for some time now. Recently, it has been
found that this class of Hamiltonian, with ¢ =0, has
emerged in some models dealing with two-dimensional
(2D) random systems [1]. In addition, the form
H(c,O,N) has been used in work on directed Feynman
paths with random phase [2]. Another approach taken to
the same Feynman path problem [3] gave different re-
sults. This discrepancy led Blum, Koltun, and Shapir [4]
to examine the Hamiltonian (1) when applied to a 1D
quantum system consisting of an equal number of two
types of charged bosons. To resolve the disagreement
they directed their effort toward finding the exponent of
N in the solution of the ground-state energy of the sys-
tem. Using variational methods they were able to deter-
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mine the N dependence of the ground-state energy for
large values of N.

We [5] also applied (1) to the same quantum system
used by Blum, Koltun, and Shapir. Our effort was aimed
at finding an expression for the leading terms in the
ground-state energy. We used a hybrid Bogoliubov per-
turbation method in the ground-state energy determina-
tion. Also, we were able to confirm the results of Blum,
Koltun, and Shapir concerning the N dependence of the
ground-state size when 0 =g <<c and with N large.

In this paper the Bogoliubov approach will be used
again to see what can be determined about the thermo-
dynamic properties of system (1) at finite temperatures
and finite sizes. In Sec. II we will show the calculation
method used. The interaction parameter space will be
¢>0 and g 20. (The case with ¢ =0 has already been
dealt with by Yang and Yang [6].) The case of g0 will
be treated separately from g =0 because of some essential
differences. However, after the partition function is de-
rived for each of the two g conditions, the calculation be-
comes very similar. Section III contains a discussion of
the calculation results to illustrate the thermodynamic
behavior of the system.

II. CALCULATIONS

A. The g0 case

Confining the system to a “box” of length L and going
over to a Fock space constructed in terms of single-
particle wave functions under periodic boundary condi-
tions gives
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Here, the a, ,a‘,J ,bp ,b; are the annihilation and

creation operator for the two types of bosons present.
The periodic boundary conditions applied to the single-
particle = wave functions set the momentum
p=p,=2mn/L where n=...,—2,—1,0,1,2,... . At
this point the Bogoliubov approximation scheme is ap-
plied. The approximation is valid when the couplings ¢
and g are weak and almost all particles are in the lowest-
energy single particle, or p =0, state. Under these condi-
tions the following approximations are valid:
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where N, is the occupation number of one of the types of
bosons in the p=0 state. A similar approximation is
made for the other type of boson present. The major
contributions to (2) would come from terms involving the
p =0 state and so all other terms will be dropped. Terms
with only one zero-mode operator will also be dropped.
In consequence, only terms producing numbers of O (N)
and larger are kept. The only terms left in (2) are now
those involving four and two zero-mode operators. Con-
servation of momentum eliminates terms involving three
zero-mode operators. In effect, following the prescription
above, one sets
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in (2) to get an approximation to the Hamiltonian. After
some rearranging the result is
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where e =cN /2L and e'’=gN /2L. In (5) the gN /L orlgmates from terms in (2) containing the four lowest, or p =0,

mode operators. Introducing the operators cp
diagonalization of the Hamiltonian to
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Each of the two blocks on the diagonal is now “diagonalized” by introducing the Bogoliubov transformations
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and adjusting the value of 8'*)(|p|) to carry out this re-
quirement. The result of this formalism is
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gy

As our aim is to study the thermodynamic properties
of the system governed by H in (2) our next step is to
determine the partition function Z defined as

Z(ByL):Tr{exp( _BH)} ’ (9)

where B=1/T. Our method restricts us to the parame-
ter region where the important contribution to (9) comes
from those states in which most particles are in the
single-particle ground state. In such a region we can use
(8) in place of H in (9) to get
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Z(B,L)=exp(—BH g4 )Tr{exp(—BH )} . (10)

The trace sum in (10) is carried out over the quasiparticle
states of (8) to obtain
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Using the partition function we can calculate the ther-
modynamic measures of the system in a straightforward
manner. The energy is given by
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The final determination using the partition function is for
the entropy using S =(3/08T)[T InZ(B,L)] to get

- exp(Bw, ) exp(Bu,)
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Another of the system properties we consider is the

|
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specific heat which can be derived from (12) as

_ | 9E
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(15)

As already mentioned, in using the relationships de-
rived above it must be borne in mind that the validity of
the Bogoliubov method used is based on the assumption
that the average number of particles in excited modes
(N,.,) is small compared to the number of particles in
the Bose condensate. Any calculation using a given set of
values for the system parameters must be checked to en-
sure the system satisfies the ratio R =({N,,)/N)<<1.
We can estimate the number of particles in excited modes
through

Tr
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It is of some interest at this point to examine the
behavior of the quantities derived above when N and L
are large. For sufficiently large N and L, the summation
>.-=1 can be replaced with the continuous form
(L /27r)f3°dp where p, =(27n /L )—p. When (8b) is put
in this continuous form the result is (with N /L =p)

3/2
] ] R

From (11) comes, in the continuous form, the Helmholtz
energy
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Using (18) the continuous form of (12) can be written as
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Employing (18) and/or (19) gives the continuous forms of (13), (14), and (15), respectively, as
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Examination of the continuous equations above shows 2 (a] a + bTb )
that all the quantities except for P are proportional to N =
and are thus extensive. While a priori any one of these
thermodynamic quantities should depend on N, L, ¢, g, +-£ S Sonmnt ,a ,a a, -I—b b b, b,
and 7, in the continuous context there is a general scaling 2L . mn
relationship of the function form —2a L b ':r a,b,), (252)
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1, for the extensive quantities
0, for the pressure.

One striking feature of this scaling is that the tempera-
ture dependence enters via cp/T. Finally, it should be
noted that trying to go to the continuous form of (16)
yields a diverging integral when the lower limit is set to
p=0. This divergence is a reflection of the fact that an
infinite one-dimensional system does not allow a Bose
condensation and without the condensate the Bogoliubov
approximation is not valid. Although large systems may
be considered our method does not support going to the
thermodynamic limit N,L — « with N /L finite.

At this point we would like to add a comment on the
ground-state energy as given in (17). Comparison of this
formula with (18) given in [5] will show there is disagree-
ment between the two. In [5] we used the approximation

= T bo—b =(N /2)!/? rather than the more accu-
rate one given in (4). As this refinement only affects those
terms containing four zero-mode operators, and basically
results in the omission of a term of O (N) from being add-
ed to a term of O (N?), the effect is not enough to change
the qualitative results given in [5]. Indeed the quantita-
tive results for the g =0 case are not affected at all. How-
ever, using (17) as the formula for the ground-state ener-
gy for periodic boundary conditions (g >0) is an im-
provement on that given in [5].

B. The g =0 case

If we set g =0 under periodic boundary conditions the
system is unstable against collapse since the positive term
gN?/L in 8(b) is now absent. However, if Dirichlet
boundary conditions rather than periodic ones are used
then (2) becomes, as is shown in more detail in [5],

where p, =mn /L (n =1,2,3,...). After the Bogoliubov
approximation is made the equation corresponding to (5)
is
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or in a more compact form, corresponding to (6),
H~ 2 (s (s)
n=2s=x
+e 2 Fon (2SS +¢} _)T _)T+c,(,,_)c,(,_)).
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(27)

The term 7N /L?, that comes from the kinetic energies
of the particles in the single-particle ground state is the
term which provides the stability against collapse for the
system. At this point in [5] we switched to the variation-
al method and found that this amounted to the substitu-
tion f,,,—26,,,. From there we followed the Bogo-
liubov transformation method. The following observa-
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tion serves as a support for this approximation. By using
this approximation we arrived at the same term in the
ground-state energy expression as we had determined in
the periodic boundary case. That is, the terms in the
Hamiltonian that are bilinear in operator content pro-
duced the same result regardless of boundary conditions
suggesting that the couplings between modes n and n+2
have no net contribution. We have applied the same ap-
proach here to (27).

Since one of the operator types in (27) is already
present in the required diagonalized form it is only neces-
sary to apply a Bogoliubov transformation to the other,
namely,

el coshf, —sinhd, | (a,
c'(l—fr ~ |—sinh6, coshd, | |a! ] : 28)
This transformation leads to
H~Hg 4 +H,,. , (29a)
Hg,d=’TLZ—12V+% S (4, —pi—4e) (290)
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which is the counterpart to (8). From here the calcula-
tions follow the same path as in the g0 case above giv-
ing, as listed below,
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Taking the large N,L limit of (31)-(34) will produce
the same results as found above in the g0 case (if one
sets g =0, of course). So, not surprisingly, in the large
N,L region where the continuous forms can be applied,
the change in boundary conditions does not change the
system’s tendency to collapse. However, as will be
brought out below, in the range of N and L where the
term 72N /L? becomes significant not only does the sys-
tem have a finite size but this size has a markedly
different behavior than the g > 0 case described above.

III. DISCUSSION

To illustrate some of the implications of the above
derivations, we will look at a few of the general
mathematical properties of an isotherm of the equation of
state of the system. For small enough values of L the
dominant term in the pressure determination is either
gN?2/L? (for g#0) or 7*N /L* (for g=0). As a result,
the pressure is positive for small enough L. An examina-
tion of (13) will show that for an isotherm at very large L
the pressure effectively becomes

2

g8 = 5
p== — (36)
L n§1 exp(Bp2)—1

which in the continuous limit, with L — 0, is

, g % (T)3/2
p=2[~_»p df = s . 37)
T Y0 exp(Bp°)—1 T

Turning off the interactions in (13) by setting g =c=0
will also produce this result. Thus, in the large L region
the system behaves as a degenerate, noninteracting, Bose
gas and (37) is the one-dimensional analog of the familiar
result for such a gas as presented for example in [7].
Treating (32) in the same manner also leads to (37).
Thus, for large L any isotherm of P vs L should asymp-
totically approach the positive value given in (37). On
setting 77=0 in (20) it is straightforward to show that
P =0 when

__ 97N g?
T4 (c3/24g3/2)2

L

The implication of the above is that for at least some
range of 7'>0 the isotherms must cut the P=0 axis at
two points.

Now we must add that the physical behavior of the ac-
tual system may not follow the mathematical form, out-
lined above, over the entire parameter space encompased
by the mathematics. As stated before, we must test to en-
sure we are within the range of validity of our approxi-
mation technique. As a consequence of this limitation,
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when g >c the leading gp? term so dominates that any
temperature variation in the isotherms is almost com-
pletely masked. It is only when g < ¢ that our method be-
comes useful in describing the thermodynamics of the
system. Fortunately this parameter region may arguably
be the more interesting for the following reasoning. The
number of “attracting” pairs in the system is N2/4 while
the number of “repulsing” pairs is (N2/4)—(N /2). Ex-
amination of (1) will show that the ‘“repulsions” are
weighted as g +c¢ while the “attractions” are weighted as
g —c. So with g >c there are actually only repulsions
present whereas in the g <c to the g <<c region the sys-
tem goes from predominantly repulsive to predominantly
attractive.

To better illustrate some of these implications we will
select a set of parameters and present the results in the
form of numerically generated graphs. The numerical
values given on the axes of the plots are in arbitrary units
but these units apply to all the figures. For the purposes
of establishing a limit below which the method is valid we
have chosen to accept any calculation that leaves 95% or
more of the particles in the Bose condensate. If this
range is exceeded on any of the graphs then the point of
violation is marked “limit” on the graph.

In each of the first four figures pressure and the
Helmholtz free energy, F =FE — TS, are plotted as func-
tions of L for the values of the parameters g, ¢, N, and T
given. Figure 1 displays the results for T=0. In Fig. 1
the pressure curve crosses the length axis at only one
point but does approach this axis asymptotically for large
values of L. If there is no external pressure constraint the
system would assume the size L, where P=0. The
minimum in the Helmholtz free-energy curve occurs as it
should at L,. As the Helmholtz free energy is equal to
the energy at T=0, L is the size of the ground-state sys-
tem. In Fig. 2 the pressure curve now shows there are
two values of L for which P=0. The minimum in the
Helmholtz curve occurs as above at L,. The other P =0
point corresponds to the maximum in the Helmholtz
curve making this point an unstable system size. Figure 3
marks a kind of disassociation temperature which we will

T -10
90 +
P 401 Pressure I:
‘ 15 1
€ 50+
s m
s 30+ h
u o
. o101 20 1
t
e
-10 + z
-30 +-25

Length

FIG. 1. Plot of pressure in units of 10° and Helmholtz free
energy in units of 10° vs length for 7=0. Here, g=2X1077,
¢=0.1, and N=10° Physical quantities are in arbitrary units.
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FIG. 2. Plot of pressure in units of 10° and Helmholtz free
energy in units of 10° vs length for T=400. This temperature is
below the disassociation temperature for g=2X 1073, ¢=0.1,
and N =10° Physical quantities are in arbitrary units.

refer to as T,;. Below T, the system localizes within a
finite size as discussed above. Above T, as shown in Fig.
4, the pressure curve has no zero value and there are no
“bound states.” The Helmholtz curve has no minimum
in Fig. 3 or Fig. 4 although it does have a point of
inflection, as it should, in Fig. 3 at the L value where the
P curve touches the horizontal axis. The pressure curve,
in a descriptive sense, seems to be moved higher up the
vertical scale as the temperature increases. All of the
pressure curves given in the figures show a region where
the inequality (0P /3L )y >0 holds. The system is, of
course, thermodynamically unstable in this region.

In Fig. 5 we display the specific heat versus tempera-
ture at three fixed lengths. All values used in these
figures meet the criterion of R <0.05. Under these con-
ditions the specific heat increases monotonically with
temperature. An examination of (15) and (34) shows that
the specific heat is always positive.

The values of the parameters g, ¢, and N used in the
graphs were chosen to show conveniently all the features

r -10

P 120 1 — Pressure 15 I:
r 1
N m
s 80 0
s

0
Y 1
r 40t ¢
¢ z

0

Length

FIG. 3. Plot of pressure X 10° and Helmholtz free energy
X 10° vs length for T=974.8. This temperature is the disassoci-
ation temperature for g=2X 1077, ¢=0.1, and N=10% Physi-
cal quantities are in arbitrary units.
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100 + L 20 O
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: L 25 1
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e 501 -30 y
L -35
0 -40

Length

FIG. 4. Plot of pressure X10° and Helmholtz free energy
X 10° vs length for T=1100. This temperature is above the
disassociation temperature for g=2X10"% ¢=0.1, and
N=10°. Physical quantities are in arbitrary units.

of the thermodynamic behavior of the system under con-
ditions where the approximation method used was valid.
In Fig. 6 the T=100 isotherm for g=1.0X 1073, ¢ =0.1,
and N =10%is plotted. Also potted are the results of dou-
bling and tripling this value of g. Increasing the value of
g increases the value of L,. In this case increasing to
g=6X10"> would produce an L, that is outside our
range of validity as determined by R. It can also be seen
from the graph that an increase in g increases the
minimum value reached by the pressure curve. This has
the effect of decreasing the temperature 7;. In Fig. 7
curves for T=100 are plotted but this time it is ¢ that is
doubled and tripled starting from ¢ =0.05. The effect is
basically the reverse of the effect of increasing g.

The parameter space available to g and c is restricted
to values that satisfy R less than some value felt to be
reasonable by the user. If the system is to have an L, un-
der this restriction then the requirement is g <<c. This
requirement was established for the ground-state energy
in [5] and is here extrapolated to be required for finite
temperatures. Our method will not allow us to determine

600 1
L=20
S
P 400 1 L=15
H
L=10
€
a 200 +
t
0 Attt
0 200 400 600 800 1000

Temperature

FIG. 5. Plot of specific heat vs temperature (at fixed length).
These curves are for g=2X10"%, ¢=0.1, N=10% and L equal
to the value indicated. Physical quantities are in arbitrary units.
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FIG. 6. Plot of pressure X 10° vs length at a fixed tempera-
ture of 100. Here ¢ =0.1, N=10°% and the values of g are as in-
dicated. Physical quantities are in arbitrary units.

whether or not the system has an L if this restriction is
not met.

As mentioned Sec. II B, reducing g to zero has the
effect of collapsing the system. If periodic boundary con-
ditions are replaced by Dirichlet ones, then the system
collapse can be prevented but, as pointed out above, not
for very large N and L. With the boundary condition
change the qualitative behavior of the system for g =0 is
much the same as presented in the graphs already given.
There is, however, one major difference in the variation
of the value of L, as a function of N. Figure 8 illustrates
this difference. For g0,

C
L,_o=Ly=Ly(N,c,g,T)=N—f

T"/2,-g—
T ¢ c

> (38)

as can be seen from (20). On the other hand, for the g =0
case, L, does not depend on N in the simple manner
given in (38). We will now show that the L, for g=T=0
is a good approximation to the L, for g =0 at any tem-
perature well below the temperature 7.

700 T
500 +
300 +

limit
100 +

o = v e o T

-100 + 40 60 80

4+—c=0.15

-300 +
Length
FIG. 7. Plot of pressure X 10° vs length at a fixed tempera-

ture of 100. Here g=2X10"%, N=10° and the values of c are
as indicated. Physical quantities are in arbitrary units.
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Taking the continuous form of (32) gives
3/2

2
2rN 2 [1+0((cNL)"72)] .

L? 37

cN

P(L, T=0)=
( 0) T

(39)
Solving (39) for L, sets
Ly(N,c,g=T=0)
=73 ¢ TINTIA[1+0(c 7PN T, (40)

Here, O(c ~'/2N 13 can safely be ignored for large N.
In the vicinity of L =L, e=cN /2L (which is propor-
tional to ¢2N*/®) is very large. Under these conditions if
B/L2, which is proportional to ¢?BN2/3, is >>1 the
temperature-dependent  part of (32a) is  of
O(c3N exp[—4(3) %377 22BN?/3]) which makes it
much smaller than the first term O(c3N2), in (32a).
Thus, the temperature dependence of L is not very im-
portant if T <c?N?/3, Summarizing the above, we obtain
as an estimate for L,
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FIG. 8. Log-log plot of system size at P=0 as a function of
the number of particles in the system. The parameters for all
curves are set at ¢=0.1, and 7=100 with the values of g as in-
dicated in the figure. Physical quantities are in arbitrary units.

LO(N,c,g =T=0)=7T232/3C—IN—1/3+0(C3N"4/Bexp[ —4(3)_4/37T_2623N2/3]) i 41)

So, for g=0, the system is the form of a ‘“hard” core
whose size is almost independent of T as long as T is well
below the temperature T,.

Figure 8 also shows that for some values of N the L,
value for finite g can be less than that for g =0. Thus L,
for g=0 cannot be extrapolated from the behavior of
g—0. Again, the source of this seemingly peculiar
behavior can be traced to the type of boundary condi-
tions imposed. The comparison between g =0 and g >0
should be done under the same boundary conditions. In
[5] we carried out the derivation of the ground-state ener-
gy for the g >0 case under Dirichlet boundary condi-
tions. In that process we had to carry out a boson trans-
formation that is described in the appendix of [5]. Unfor-
tunately, with our use of the more rigorous approxima-
tion in (4) we have been unable to carry out the entire
solution to the boson transformation so we cannot say
what type of c-number term appears. Nevertheless, we
can make the following argument. For both the g =0
and g >0 cases the Dirichlet boundary conditions gen-
erate the term 72N /L% In the g =0 case it is the pres-
ence of this term that both prevents the system collapse
and allows for Ly, < N ~!/3 behavior. In the g >0 case the
gN?/L will usually be so much larger than 72N /L? that
the system has a L < N behavior. However, if g is made
small enough the point will be reached where the dom-
ination hierarchy of these two terms will change and the
transition from the Ly =N to the Ly <N ~!/3 behavior
will be a continuous one and not the discontinuous pro-
cess suggested by Fig. 8. We can, in fact, confirm this
through the Boson transformation (cf. Appendix A of [5])
which can be explicitly performed for small gLN.

We will end this discussion section with one more note
on scaling. As mentioned above, if the system is to have
an L, that meets our method’s restrictions, then the re-
quirement is g <<c. The magnitude of ¢ can be related to

[

N as follows. In Fig. 8, if one considers the plot for
g£=0.00001, for example, the R value for the point
N =10’ is approximately 0.00017. The R value increases
as N is increased on this plot until at N =108 the R value
has increased to just over 0.005. Obviously one cannot
continue to increase N indefinitely with this set of param-
eters and if the system is to have a larger N then the value
of ¢ must be reduced. If one examines (16) it can be seen
that for a given T and L a decrease in g and ¢ by the same
factor by which N is increased will leave (N, ) un-
changed. However, on the benefit side, R will be de-
creased by the same factor as the increase in N since
R=(N,,)/N. Using this ploy it can be seen from (15)
that the graphs of specific heat would be identical to the
ones presented in Fig. 5 for any larger value of N provid-
ed g and c are both reduced as just explained. The ploy
will not produce the same effect on the pressure curve be-
cause of the term gN2/L2 However, if ¢ is reduced by
the same factor by which N is increased and g is reduced
so that the value of gN? is unchanged, then the pressure
curves already presented can be made applicable for prac-
tical purposes to those for larger N. For example, chang-
ing the parameters in Fig. 2 to N=10', ¢=1077,
g=2X10"!3 will produce a graph that is indistinguish-
able from Fig. 2 at the scale to which the figure is drawn.
The R goes from R =0.05 at L =37 to R=0.7X10"° so
that the pressure curve could now be extended to greater
values of L and still remain within the domain of validity.

IV. CONCLUDING REMARKS

In this paper we have illustrated some of the thermo-
dynamic properties of this one-dimensional system of bo-
sons. The system would possess these attributes at least
in the parameter space over which our approximation
method is valid. The idea that the system has a natural
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or stable size was emphasized more heavily than other
system properties. If the system is to have an L, then
our method limits us to only be able to consider
0=g <<c. The method will allow consideration of the
parameter space g >c but whether an L, exists under
these conditions cannot be answered using this method.
As the system temperature is increased from zero the size
L, of the system increases. The temperature will eventu-
ally reach a “‘dissociation” value above which the system
ceases to have a stable size and will expand without limit.

Particularly striking was the contrasting N dependence
of L, between g =0 and g > 0. This variation in N depen-
dence was pointed out in [4] for the ground-state energy
and we have shown that it persists at finite temperatures.
However, one must be careful when g =0 or is very close
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to zero as then the N dependence of L is dependent on
the boundary conditions used for the system. Finally, as
was mentioned in the Introduction, other authors have
interest in this system’s size as they are working on prob-
lems for which this Hamiltonian is but a piece of the puz-
zle. It would be gratifying if our work as presented here
was of some benefit to those writers.
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